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where 

r<t>(r) = ( 4 A K (1 + Kr)e~"E[Kr) -

(1 - Kr)e"E{2,Kr) (21b) 

C = -KE(Ka) + K(1 - Kd)(I + 

Ka)-^E(ZKa) (21c) 

(1 + KaYBe0 = - ( 2 A ) ( I + «0(2 + *a) + (1 + 

KdYE(Kd) - (1 - /<2a2 + 2K3a3)e2K"E(SKd) (2Id) 

We shall be content with the approximate solutions 
described by eq. 20 and 21, because the system (18) is 
itself hardly accurate enough to justify further refine
ment. The corresponding electrostatic corrections to 
the thermodynamic potentials of the ions are accord
ingly 

AMj = f '\(*i(a) - (1/ZJo)), + ^(aW)dr, 
J-n = 0 

= (Vi)(*i(a) - (VDa)W + (Vi)*.(a)ej» (22) 

where according to eq. 20 and 21 

tf2(o) = (K2
m/D2kT)e3K"(l + Ka)-sE(3Ka) (23) 

as first found by La Mer and Mason, and 

^1(O) - (1/Da) = -(K/2DkT)(l + Kd)-1 + 

(*V/12£>2fer)[(l + Ka)-3 -

Kd(I + Kd)-<e3*aE(3Ka)] (24) 

The terms proportional to r/i2 represent corrections to 
the Poisson-Boltzmann equation, which would actually 
contribute other terms of comparable to K3E(3KO) 
when treated more accurately. We note that the term 
of order K2 has a fairly small coefficient, which is inde
pendent of the parameter a. Moreover, its effect differs 
trivially from that of replacing /c2 in the original Debye-
Hiickel formula bv 

K\\ + (KVY/3DkT)) (25) 

This means simply that the opportunities for correla
tion among the ions are slightly enhanced by the immer
sion of a charge, provided that the resultant polarization 
tends to distribute the ionic strength unevenly. In a 
symmetrical electrolyte there is no first-order effect of 
this sort, and the correction vanishes. 

I t seems likely that further corrections to SPi, corre
sponding by reciprocity to ^ , etc., will represent reduc
tions of the effective ionic strength. As was recognized 
by Bjerrum, pairs of ions close together will not contri
bute much to the shielding of electrostatic forces. 
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A previous4 approximate integration of the Poisson-Boltzmann equation leads to a chemical potential which 
contains two major terms at low but nonzero concentrations. The first is the classical square root term due to 
long range electrostatic forces, and the second (linear in concentration) is due to short range interactions. It 
is shown that the net chemical potential is substantially independent of the distance chosen for the transition 
from the short to the long range approximation of the electrostatic potential. Also, it is shown that the deviations 
from the limiting law which derive from the Poisson-Boltzmann equation are in the opposite direction from 
those observed in real electrolytic solutions. The calculated activity coefficient for an idealized dilute elec
trolyte, defined as one whose properties are described by the Poisson-Boltzmann equation, is the product of 
two terms: the Debye-Hiickel activity coefficient for point charge electrolytes times the fraction of ions which 
contribute to long range interaction (the "free" ions in the Bjerrum sense). 

Debye's fundamental contribution to the theory of 
electrolytes was the introduction of the space charge 
model, which permitted statement of the mathematical 
problems in the form of differential equations. For 
the thermodynamic properties, a solution of the 
Poisson-Boltzmann equation was required; an ap
proximate solution, valid at low concentrations, was 
obtained through the familiar series expansion of the 
Boltzmann factor. The classical limiting law (pro
portionality between logarithm of activity coefficient 
and square root of ionic strength) followed immedi
ately. Most subsequent treatments have been em
pirical and/or theoretical at tempts to increase the con-
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centration range of the calculated activity functions. 
Here we shall discuss a solution so dilute tha t only 
long range interactions and pairwise ionic contacts 
need be considered; this is an idealized model which 
will show the magnitude and direction of those devia
tions from the limiting law which are inherent in the 
nonlinearity of the Poisson-Boltzmann equation. 
I t is a fictitious system of charged spheres in a contin
uum, whose properties are described by the differential 
equation; of interest is how its properties differ from 
those of a real electrolytic solution. I t is agreed that 
the limiting behavior at extremely low concentrations 
is the same for both. It will be found that the ideal 
and rea l ' systems diverge from the limiting tangent 
in opposite directions. 

Another approximate integration of the Poisson-
Boltzmann equation 

A ^ = (Kh/Dp) sinh (ttj/kT) (1) 

was recently4 made in which special attention was 
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given to the electrostatic interaction of ions at short 
mutual distances.6 These configurations are auto
matically excluded from consideration by the classical 
approximation of the hyperbolic sine in (1) by its argu
ment, a step which linearizes the equation to the form 

W = *V,- (2) 
(Above, tf/j is the potential at a distance r from a refer
ence ion of species j of charge e in a medium of dielectric 
constant D at temperature T; k is Boltzmann's con
stant and /3 = e2/DkT. This discussion is limited to 
symmetrical electrolytes where e + = — e~.) The 
procedure used was to represent the potential at short 
distances by the (linear) self-potential t/Dr plus an 
unknown function <£(r) 

fc = ej /Dr + <j>(r) (3) 

Substitution of (3) into (1) gave a second-order non
linear differential equation which determines <j>(r) 

A</> = («V2AS) exp(/3/r + t<j>/kT) X 

[1 - e x p ( - 2 0 / r + 2«t,/kT)} (4) 

By approximating the quanti ty in brackets by unity 
and neglecting e<j>/kT compared to /3/r, (4) reduced to 
the inhomogeneous equation 

A* = (KU/2D$)e!"r (5) 

which can be solved explicitly to give a potential 
\ps which is valid for small values of r. ("Small" 
and "large" distances are, respectively, distances of 
the order of ionic diameters and distances of the 
order of the radius K~1 of the ionic atmosphere.) 
Two arbitrary constants are, of course, involved. 
One of these is evaluated using the condition that the 
field strength at r = a, the contact distance, must re
duce to ( — e/Da2). Then for large distances, the 
hyperbolic sine was approximated by the first two terms 
of its series in (1) to give the differential equation 

A*L = (Kh/D0)[e+L/kT + MkT)*/6] (6) 

which was solved to give ^ L , the long range potential. 
Again, two constants of integration appear; one of 
these is zero by the condition that the field strength 
vanish at r = °°. 

In this way, two expressions, >f/s and ^ L , were ob
tained for the potential, the former describing the 
field near the ion where screening of the reference ion 
is negligible, and the latter serving in the region where 
the ionic atmosphere appreciably screens the charge 
of the central ion. Two arbitrary constants remain: 
they are evaluated by requiring that potential and 
field strength, which must be everywhere continuous, 
are in particular continuous at a value R of r. The 
value /3/2, the Bjerrum radius, was chosen for R, be
cause pairwise distribution functions6 - 9 for ions gener
ally have a minimum near r = /3/2. Ion pairs for 

(5) The model used here to represent the electrolytic solution is charged 
rigid spheres in a dielectric continuum. The short range potential is + — 
00 for r < a. tonic polarization and other short range effects are excluded by 
hypothesis. 

(6) N. Bjerrum, KgI. Danske Videnskab. Selskab.. Mat.fys. Medd.,7, No. 9 
(1926). 

(7) (a) R. M. Fuoss, Trans. Faraday SOCSO1SW (1934); (b) R. M. Fuoss, 
/ . Am. Chem. Soc, 57, 2604 (1935). 

(8) H. Reiss, / . Chem. Phys., 25, 400 (1956). 
(9) J. C. Poirier and J. H. de Lap, ibid., 36, 213 (1961). 

which r > /3/2 are defined as free,7 in the sense that no 
particular ion of the opposite charge is nearby; those 
pairs for which r < /3/2 present essentially a dipole 
field to a distant observer. These ions are the ones 
for which the approximation sinh x « x is emphati
cally never justified, even in solvents of high dielectric 
constant, and for which the function <j>(r) was intro
duced. 

Using this value of R and the Giintelberg charging 
process, the following expression for the activity 
coefficient was found 

- I n / , = r / ( l + r) + 0(T*) (7) 

where r is the dimensionless variable 

r = /3K/2 = 4.2016 X lOtc/,/(DT)'/' (8) 

F o r d = 4.00 and at 25° 

c = 4.1285r2/&s (9) 

where 

b = /3/a = S/DkTa (10) 

= 140. ! / A * ford = 4.00 (10') 

The limiting form of (7) for dilute solutions 

fi = e~7 (H) 

agrees exactly of course with the classical result of 
Debye and is independent of ion size and of the 
value R of r at which long and short range potentials 
and field strengths are matched. 

Terms of order r2 ~ c (and higher), however, de
pend both on a and R. The general nature of the 
higher terms is to increase the numerical value of 
In fj, i.e., to decrease the activity coefficient. In other 
words, the empirical Bc term in In / which approxi
mately describes the frequently observed minimum 
in activity coefficients cannot possibly derive from (1); 
high concentration properties will require qualitatively 
different theoretical sources. The purpose of this 
paper is to consider the influence of the choice of R 
on the results and conclusions of the previous analysis.4 

Theoretical 

Before introducing a variable matching distance R, 
the approximations made in reducing (4) to (5) will 
be reconsidered. For r small, neglecting the term in 
exp( — 2/3/r) compared to unity in (4) is completely 
justified. The other approximation, exp(t<j>/kT) « 1, 
can easily be improved, and since the result introduces 
the point-charge activity coefficient as a multiplier, 
the recalculation is worth doing. The first approxi
mation10 gives 

e<t>/kT = 2T2[B + A$/r + F1(Ol (12) 

where 

B « - 1 / ( 1 + T)T (13) 

is the leading term in the bracketed expression in (12). 
For small distances (which is the only range where 
<t> is used), this term dominates the others, and in
creasingly so with decreasing concentration. We 
therefore use 

t<t>/kT « - 2 T / ( 1 + r) (14) 

(10) Ref; 3, eq. 9 and 24. 
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in (4), giving as the starting equation for <j>(r) 

A</> = ( K
2 e /2£>/3)^ A exp[-2r / ( l + T) ] (15) 

where 

e x p [ - 2 r / ( l + T ) ] = / ±
2 (16) 

is the square of the activity coefficient. 
The solution of (15) is 

4> = We0f±*/2D){B' + A/3/r + F1(T)] (17) 

where A and F\(r) are the same as before,11 but B' is 
left dependent on the choice of R. The long range 
solution \pL is, of course, also the same as before. On 
matching at r = R, we find 

/ ±
2 5 ' ( 1 + KR) = - 1 / r - G3(KR) + 

J^[F1(R) + F2(R)] + 0(r) (18) 

For the potential \pj*(a) at the reference ion due to 
the presence of other ions, combination of (3), (17), 
and (18) gives 

ij* (a) = +i - ti/Da 

= (T<jKf±yD)[B' + F1(O) + Ft(a)] (19) 

Use of (19) to give the electrical part of the free energy, 
and differentiation of the latter with respect to «,-
to give the activity coefficient, produces the equation 

-Infj = (1 + KR)-1Ir + T2G3(KR) + 

T*f±*H(b,0/R)] (20) 

where terms of order r3 have been dropped, and the 
function H is defined by 

2H(b,x) = Ep(b) - eb(l + b)/b* -

Et(x) + e*(l + x)/x* (21) 

The function G3(KR) has its origin in the higher 
term (in i/<3) which was retained in the differential 
equation for the long range potential. I ts value, when 
multiplied by T2, is small compared to the other two 
terms in the brackets in (20) and rapidly decreases as 
its argument increases. Explicitly 

G3(x) = 2e~3x/3 - 8xe*Ea(4:x)/3 (22) 

Numerical values are given in Table I. In order to 
simplify the calculation, G3(KR) in (20) will be replaced 
by G3(T) in constructing Fig. 1 and 2. The error is 
practically invisible. 

X 

0.02 

.04 

.06 

.08 

.10 

.12 

.14 

.16 

.18 

.20 

d(x) 
0.5176 

.4348 

.3740 

.3261 

.2869 

.2541 

.2263 

.2024 

.1817 

.1635 

X 

0.25 

.30 

.35 

.40 

.45 

.50 

.55 

.60 

.65 

.70 

Gi(*) 

0.12712 

.09999 

.07936 

.06346 

.05104 

.04125 

.03349 

.02728 

.02230 

.01828 

In Table II are given the values of H(b,x) which 
will be used later. The first column gives the values 

(11) Ref. 3, eq. 9, 10, and 23. 

of x, and the headings of the H columns are the values 
of b. This function, which is defined by (21), has as 

TABLE II 

THE FUNCTION H(b,x) 
, , b —-

j ; 2 3 4 5 6 7 S 

2 0 .0000 0 .7972 1.5781 2 .5765 4 .0644 6 .5214 10.8786 
1 1.4769 2.2741 3.0551 4.0535 5.5413 7.9984 

2/3 2.8741 3.6713 4.4522 5.4506 6.9385 9.3955 13.7527 
1/2 4.4253 5.2225 6.0034 7.0018 ».4897 10.9467 
2/5 6.1806 6.9778 7.7587 8.7571 10.2450 12.7020 17.0592 
6/2 1.4769 1.3426 1.5781 2.1570 3.2672 5.3475 9.3005 
i>/3 2.8741 2.2741 2.3660 2.9169 4.0644 6.2344 10.3310 

i ts asymptotic expansion for b > x » 1 the same 
form as the association constant for ion pairs12 

T2fH(b,x) « (6IrTVa^VSOOO)Z2C (23) 

Discussion 

Two kinds of choices are available for R: a value 
which depends on the solvent via the Bjerrum radius 
/3/2 = (2/2DkT and a value independent of dielectric 
constant. Examples of both will be considered. 
The chemical potential is most simply presented in 
terms of the dimensionless variable T, denned by (8). 
I t depends on both concentration and the DT product; 
two solutions which have equal values of T are in cor
responding electrostatic states. Concentration can 
be expressed also in terms of b and T, as shown by (9). 
In the figures, a c-scale is given at the top and a r-scale 
a t the bottom of each panel. The Bjerrum parameter 
b depends on the contact distance a and on the DT 
product. For convenience, we shall choose the round 
value a = 4.00 and set T = 298.2°; values of dielectric 
constant corresponding to a given value of b are then 
easily obtained from (10')- I t is clear that the ap
proximations made in deriving (20) will limit con
sideration to dilute solutions; we shall use the same 
criterion as that used in the conductance problem13 

Ka < 0.2 (24) 

This choice is based on both theoretical and practical 
grounds: (1) if Ka > 0.2, the maximum charge in the 
atmosphere is less than five diameters from the center 
of the reference ion; at shorter distances, fluctuation 
terms will soon become dominant and the approxi
mation by a continuous space charge (which justifies 
the use of the Poisson equation) ceases to be realistic; 
(2) for Ka > 0.2, terms of order ic3a3 start to become 
visible, and the purely numerical approximations (such 
as dropping terms in T3) no longer are valid. Trans
lating (24) into other terms, we restrict the discussion 
to the range of variables where 

2T/& = Ka < 0.2 (25) 

i.e., to the range 

r < 6/10 (26) 

For convenience in discussion, we rewrite (20) in 
the form 

- I n fj= Ti+Tt+T1= -VLiIkT (27) 

where Tx is the leading term T / ( 1 + KR) in activity due 
to long range interionic forces, and T3 is the term which 
explicitly depends on short range interactions. (As 

(12) R. M . Fuoss, J. Am. Chetn. Soc, 80, 5059 (1958). 
(13) R. M. Fuoss and L. Onsager, J. Phys. Chem., 61 , 668, last two p a r a 

graphs of Section 11 (1957). 
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ISr IQ
3O 1.3 5.2 11.6 206 103C 1.5 61 13,7 
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-Potential functions for matching at multiples of the 
Bjerrum radius, n/3/2. Code: 

x Ti/T TI/T uj/nj* 

1 4 7 1 
3 5 8 2 
5 6 9 3 

already mentioned, Ti is small and calls for no further 
comment.) 

In order to focus attention on the deviations from 
point-charge behavior, we shall consider the ratio 
Hj/Hj*, where Hj* is the chemical potential for the model 
point-charge electrolyte, with activity coefficient/,* 

- I n / , * = -Hj* IkT = T = t\/2DkT (28) 

In the figures this ratio is shown as the solid curves; 
explicitly 

H •J Hj* = T1/T + T%/r + T%/T (29) 

When the solid curve falls below unity, the activity 
coefficient lies above the limiting tangent (i.e., the cal
culated activity coefficient is nearer unity than the 
point charge value). The dashed curves represent 
the long range effects Ti/r and the dot-dash curves 
the short range ones TI/T. 

In Fig. 1, three values of R are represented: /S/2, 
3/8/2, and 5/3/2, where the code is given by the table 
in the caption. For & = 4.00, the Bjerrum radius 
/S/2 is numerically equal to 26 X 1O-8 cm. Consider 
first curves 1, 2, and 3 for 6 = 2, 3, and 5 (D » 70, 47, 
and 28). Curve 1 for b = 2 lies below the 1.00 line, 
because T3 is zero: the upper and lower limits of the 
ion pair integral, a and 0/2, coincide; the solutions 
are matched at the surface r = a. For this case, 
^s = t/Da at r = a and \p = ^ L for r > a. But for 
b > 2, the curves approach unity from above as r 
goes to zero. There is, however, no startling depar
ture: even for b = 5 at c X 1O-"3, I n / is —0.234 vs. 
the limiting law value of —0.200. But note that 
Hj/'Hj* is greater than unity; in words, the activity 
coefficient is smaller than the limiting value. We recall 
that activity coefficients of real solutions at nonzero 
concentrations generally are larger than the limiting 

values. For b > 5 (see, for example, 6 = 7), the 
positive deviations become rapidly more significant 
as more and more ions cluster as pairs. (The cross
over of curves 1,2,3 as 6 increases is due to the term 
(1 + KR) = (1 + nr) in the denominator and the in
creasing permissible range of r.) 

To state the result in a different way, in the range 
of higher dielectric constants (2 < b < 5), the ratio 
Hj/'Hj* is not at all sensitive to the value chosen for 
R. This cpmes about by a compensation between 
Ti and T3 that has physical significance. We note 
that at T = 0,' Ti is unity and decreases with increasing 
r, while T3 starts at zero and increases; compare curves 
4, 5, and 6 with 7, 8, and 9. If we choose a larger 
value of R, T3 increases (at fixed T) ; larger R means 
counting more ions as short range pairs and fewer as 
atmosphere ions. To compensate for this, Ti de
creases, and in such a way that the sum remains al
most constant. Consequently, while details of the 
picture depend on the choice of R, the net chemical 
potential is substantially independent of R (until, of 
course, the dielectric constant becomes so small that 
the exponential nature of H starts to control). 

The model to represent the solvent is a. dielectric 
continuum, which certainly is not realistic for distances 
of the order of small multiples of a, however good it 
may be for distances large compared to a. There 
has been considerable speculation on the dependence 
of "effective" dielectric constant on distance from the 
reference ion.14"16 In the examples of Fig. 1, the 
matching distance R depends on the dielectric constant 
through the Bjerrum radius; as already noted, this 
choice, for 6 = 2, automatically eliminates the ^5 from 
the equations, and only absurd results can be obtained 
for systems for which a > /3/2 (large quaternary ions 
in water, for example). Consequently we shall now 
consider some examples in which the matching distances 
are absolute. An undoubtedly interesting choice 
would be to match at R = a + md, where d is the 
diameter of a solvent molecule. A simpler choice, 
which is likewise a pure distance, is to match at R = 
ma, i.e., multiples of the contact distance. These 
distances will be of the order of several layers of nearest 
neighbor solvent molecules, of course. In Fig. 2, 
plots of HiIH*, Ti, and T3 for 6 = 2, 3, 5, and 7 are 
shown for R = 2a and 3a. Again, the decrease in T1 

and the increase in T3 with increasing R appears, but 
now the compensation is nearly perfect; even at 6 = 
7, curves 1 and 2 practically coincide. Varying the 
match point between \{/s and ^ L between 8 and 24 A. 
has practically no effect on the calculated thermody
namic potential. The computation was also made for 
R = 4a, 5a, and 6a; the ratio MJ/VJ* is strikingly in
sensitive to the choice of m, for a given value of 6. 
Some numerical values of the ratio are shown in Table 
I I I . The result may be stated as follows: the chemical 
potential of an electrolyte which is described by our 
approximate solution of the nonlinear Poisson-Boltz-
mann equation contains two large terms, one arising 
from short range electrostatic interactions and one 
from averaged long range effects. As the distance at 
which short and long range solutions are matched is 
increased, the first term increases and the second term 

(14) R M. Fuoss. Chem. Rev.. 17, 27, footnote 3 (193S). 
(15) H. S. Frank, J. Chem. Phys., 23, 2023 (195.5). 
(16) J. Padova, ibid., 39, 1552 (1963). 
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decreases in such a way that the sum remains practically 
constant. 

TABLE III 

T H E RATIO «,-/«,•* FOR VARIABLE b AND m; T — 0.2 

m 

2 
3 
4 
5 
6 

2 

0.8888 
.9029 
9260 
.9592 

1.0009 

3 

0.9672 
.9704 
.9719 
.9780 
.9895 

5 

1.1567 
1.1699 
1.1629 
1.1526 
1.1432 

7 

1.6145 
1.6443 
1.6302 
1.6065 
1.5810 

Equation 20 can be rearranged into an interesting 
form which leads to the heuristic argument that cal
culation of the concentration of ion pairs by the mass 
action equation is arithmetically justified, even though 
the hypothesis of an equilibrium between free and paired 
ions is no longer needed. Dropping small terms which 
are not relevant, (20) can be approximated as 

whence 

- In / , = T + r2e~2rH 

U = e - T e x p ( - T » e - 2 7 f ) 

(30) 

(31) 

For low concentrations, expansion of the second ex
ponential function in (31) gives 

U « e~r(l - r»c-2 TH) 

and using (23) 

ft » e " r ( l - KAe~aTc) 

The mass action equation is 

1 - 7 = KAcyie~2r 

(32) 

(33) 

(34) 

where y is the fraction of free ions. At low concentra
tions (34) becomes approximately 

1 - 7 « Kkce'iT (35) 

and combining this result with (33), we finally obtain 

ft = ye~T (36) 

To restate the result, the activity coefficient calcu
lated from (20) is formally the product of e~T, the co
efficient for point charges, and y, the fraction of ions 
outside r = R. 

The approximation given by matching function and 
first derivative at R = r is really quite close, as is 
shown by a consideration of the curvature at r = R. 
We show the result for R = /3/2. Here the second 
derivatives are 

and 

iK" = (16e/D/33)[l + T 2 L L ( 6 ) ] (38) 

where 

La(b) = (2/b)F2(b) + (V,)E,(2) - 5e'/24 (39) 

L L ( 6 ) = (2/b)Ft(b) + (V.)£,(2) + V. - c»/3 (40) 

and 

F,(b) = e\l + 6/2 + 62/2)/362 -

(b/6)Ep{b) (41) 

Inserting numerical values 

L8(6) = (2/b)F2(b) + 0 . 1 1 1 (42) 
and 

L L W = (2/b)F2(b) - 0.315 (43) 

We see that the curvatures at the matching distance 

IQ3C 1.3 5.2 11.6 20.6 IQ3C 1.5 6.1 13.7 
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Fig. 2.—Potential functions for matching at multiples of the 
contact distance, ma. Code: 

m T\/T Ti/-r fj/fj* 

2 3 5 1 
3 4 6 2 

for fa(R - 0) and $L(R + 0) both equal (16e/D/33) 
plus terms of order T2 and higher, and that the coef
ficients of the r2-terms do not differ greatly. This 
close match in curvature means that the function 
goes very smoothly through the point r = R. 


